Pages

Sunday, September 16, 2018

The Wheatstone bridge

  • The Wheatstone bridge is an electrical circuit that uses an arrangement of four resistors to measure an unknown electrical resistance.
  • The typical Wheatstone bridge contains a power source, a galvanometer (G), two resistors of known resistance (R1, R2), a variable resistor (R4) and an unknown resistance, which is the one to be measured (R3). The connection across CD containing the galvanometer is known as the bridge.
  • This circuit is sensitive to changes in the ratio of resistances across pairs of resistors.
  • When the voltages at C and D are equal, the ratios of resistances equal each other (R1/R2 = R3/R4), no current will flow through the galvanometer and the bridge is balanced.
  • By altering the resistance of the variable resistor R4 until the ratio of resistance across the limb ADB equals that of ACB, the bridge can be balanced, and no current flows across CD. By knowing the resistance required at R4 to
    balance the bridge, R3 can be calculated by using the equation R1/R2 = R3/R4
  • A strain gauge is either a foil arrangement or a conductive metallic strip. In the arterial transducer, strain gauges are mounted on a diaphragm.
  • The arterial pulsation is transmitted via a continuous column of fluid to the diaphragm, which causes it to stretch. The attached strain gauge will also stretch and its resistance increases. Conversely, when the diaphragm relaxes the resistance in the strain gauge falls. R3 is the strain gauge attached to the diaphragm, and the variable resistor R4 has been adjusted to match the resistance of R3 in the resting position, so that the bridge is balanced. Movement of the diaphragm would alter the resistance of R3, which unbalances the bridge and results a potential difference across CD. The resulting potential difference is quite small, so it is common to use a differential amplifier in place of the galvanometer to increase the sensitivity of the circuit in detecting the signal.

No comments: